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ABSTRACT 
 

Nonlinear energy sinks (NESs) are a type of passive mass damper that can reduce 
structural responses with their nonlinear restoring force. A new type of NES featuring an 
auxiliary mass which moves along a specially shaped track is proposed in this paper. 
Following the derivation of the equation of motion, an analytical investigation is performed to 
reveal the dynamics of the system. Numerical analyses are then carried out to optimize system 
performance for the case when the NES is attached to a two degree-of-freedom primary 
structure that is subjected to impulsive loadings. Comparisons with a tuned mass damper 
(TMD) show that the response reduction of the primary structure achieved using the track 
NES is competitive with the TMD during ideal conditions, while the NES shows superior 
performance when uncertainty or changes to the primary structure are considered. 
 
INTRODUCTION 
 

Structural control has a long history of successful application to response mitigation for 
structures subject to various types of dynamic excitation, including earthquake, wind, and 
blast. One of the most mature structural control methods is to use passive supplemental 
oscillators, such as tuned mass dampers (TMDs) to act as dynamic vibration absorbers. TMDs 
consist of a secondary mass, usually less than 5% of the primary structure to which it attaches, 
and increase the apparent damping in a primary structure by transferring input energy to the 
out-of-phase vibrating secondary mass (Housner et al. 1997). A key factor in the effectiveness 
of TMD systems is the tuning of the TMD, which is often done so that the TMD shares the 
same or almost the same fundamental frequency of the primary structure (Fahim Sadek et al. 
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1997). However, while the TMD provides the advantages of simplicity and cost effectiveness, 
it is limited in the ability to adapt to changes in the structure. For example, when the natural 
frequency of the primary structure shifts due to structural degradation or other reasons, a 
linear TMD can act instead as a vibration amplifier, increasing the response amplitude of the 
primary structure (Sun et al. 2013). 

Nonlinear energy sinks (NESs), on the other hand, can perform well in the presence of 
substantial changes in the dynamics of the structure, as the restoring force employed has an 
essential nonlinearity (i.e., the restoring force has no linear component and is not linearizable). 
While an NES functions as a damper by absorbing and dissipating energy, it also couples 
together the vibration modes of the linear structure; the result is the transfer of energy from 
lower to higher vibration modes of the primary structure where the energy can be dissipated 
rapidly (McFarland et al. 2005). This phenomenon is termed Targeted Energy Transfer (TET). 
The nonlinearity observed in NESs shows higher stiffness when displacement increases; thus, 
the hardening effect in the system is more apparent with increasing energy. This feature helps 
accommodate the dynamic change in the structure but also makes the efficacy of NES 
systems load-depended. NES systems behave differently for different magnitude excitations. 

Several different experimental realizations of NES systems have been previously studied. 
A piano wire was used in the experimental verification of a two-degree-of-freedom system 
comprising a damped linear oscillator coupled to an essentially nonlinear attachment by 
McFarland et al. (2005). No-pretension wires also appeared in the subsequent study of a 
lightweight NES coupled to an impulsively loaded linear oscillator (McFarland et al. 2005). 
Wierschem et al. (2013) studied the wire NES attached to a building structure model and did 
thorough research on its optimization and effect. Implementations using elastomeric bumpers 
to provide a desired nonlinear restoring force show that the bumper NES is capable of 
dramatically reducing the response of a large-scale 6-storey base structure to impulsive 
ground motion (Wierschem et al. 2013). A bumper NES system has been tested on a larger 
9-storey structure under both impulsive and blast excitations (Wierschem et al. in press; 
Wierschem et al. 2013). In the study of acoustic systems, nonlinear attachments made of 
membrane were first verified in (Cochelin et al. 2006). Bellet et al. (2010) presented a more 
complete study of a two degree-of-freedom model using membrane absorber. 

In this paper, a new type of track NES is proposed. An analytical investigation is 
performed to reveal the dynamics of the NES and numerical analyses are carried out on this 
NES. The performance of the NES system is optimized for a two degree-of-freedom primary 
structure when subjected to impulsive loads. Comparisons of responses, measures, and 
force-displacement relationships are made with the locked system and a traditional TMD 
system. The results show that the track NES is competitive with the TMD during ideal 
conditions and is more robust efficient against the stiffness change in the base structure. 
 
TRACK NES AND PRIMARY STRUCTURE 
 
Track NES 

The system studied in this paper is referred to as a track NES. This system consists of a 
mass moving along a vertically curved path, as shown in Fig. 1a. One possible physical 
realization of this track NES is a cart that runs along a set of curved tracks (Fig. 1b). The track 
is specially shaped in the vertical plane to follow a desired profile. As the NES mass moves 
back and forth along the track, the reaction of the NES mass on the track is transferred to the 
primary structure to which the track is attached. As comprehensively discussed below, the 
direction of the normal force as well as the horizontal component of the normal force between 
the mass and the track changes depending on the slope of the shape of the track at each 



position; thus, by carefully designing the track shape, various possibilities for the 
force-displacement relationship can be achieved, including essentially nonlinearities. 
 

 

 
Fig. 1. Configuration of track NES 

 
In deriving the dynamics of the track NES, the mass is assumed not to rotate, and as a 

result, no rotational inertia force is considered in this study. Also, the mass is assumed to 
remain in contact with the track; thus, the restoring force is continuous. 
 
 

 
Fig. 2. Free body diagram of track NES 

 
Fig. 2 shows the free body diagram of the NES mass. Nm

 is the mass of NES. Nu
 and 

Nv  are the relative horizontal and vertical displacement of the NES to the track, respectively. 
z is the displacement of the track. ( )Nh u

 
is the shape of the track and defines the 

relationship between the horizontal and vertical displacement of the NES mass. NF  is the 
normal force between NES and track. θ  is the angle of the track normal which is defined as 
a function of the track shape,

 ( )Nh u . g  is the vertical acceleration due to gravity. 
The EOM of track NES is derived from energy perspective. The Lagrange’s approach 

(Roy R. Craig and Andrew J. Kurdila 2006) is applied to seek out kinetic energy (2) and 
potential energy (3) separately.  The EOM is formulated by assembling those two energy 
equations into the Lagrange’s equation (1). 
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In this formulation, damping is neglected and no external force on the NES is considered; 

thus, no non-conservative force term is included in the equation. 
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Also, with the following relation, 
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(4) 

 
Expand each term in (2) and (3). 
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After combining like terms and dropping Nm  in each term, the final expression of the 

EOM for the NES mass is 
 

 ( )( ) ( ) ( ) ( )2 2
N N N N N N1 h u u h u h u u h u g z′ ′ ′′ ′+ ⋅ + ⋅ + = −       (9) 

 
Primary Structure 

The linear model being used throughout the paper is a two degree-of-freedom shear 
building and is supposed to move only uniaxially. The mass is 24.3kg and 24.2kg and the 
stiffness is 6820N/m and 8220N/m for the first and second floors respectively. Their matrix 



forms are shown as follows.  
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These values are identified from a physical experimental model in the Smart Structure 

Technology Laboratory in the University of Illinois at Urbana-Champaign (Wierschem et al. 

2012). Notice that although the columns are identical for both floors the stiffness of the first 

floor is reduced as a result of the geometric stiffness effect due to the increased weight on the 

bottom columns. The damping of the model is set at 0.1% in each mode. The resulting natural 

frequencies are 1.63Hz and 4.56Hz for the first and second modes, respectively. 

 

Equations of Motion 

The EOMs of the primary structure and the NES can then be combined to reflect the effect 

of the track NES to the primary structure to which it is attached on the top floor. The damping 

associated with the track NES system is primarily due to friction between the wheels and the 

track and damping in the bearings; for simplicity, the damping in the NES is assumed to be 

proportional to its velocity relative to the structure. Additionally, because the NES mass is 

relatively small, geometric stiffness effects are neglected. 
The NES system is shown in Fig. 3. m1, k1 and m2, k2 are the first floor and second floor 

masses and stiffness, respectively and they are from the model structure. c1 and c2 are the 
equivalent viscous damping of the 0.1% modal damping for the first floor and second floor, 
respectively. cN is the viscous damping coefficient of the NES. 1x  and 2x  are the 
displacements of first and second floors relative to the ground. gx  is the ground acceleration. 
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Fig. 3. Free body diagram of track NES system 
 

To apply the Lagrange’s approach, the kinetic energy, potential energy and the work by 
non-conservative forces of the system are written as follows. 
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( ) ( )1 1 1 2 2 1 2 1 N N NW c x x c x x x x c x xδ δ δ δ= + − − +   
          

(14) 

 
Partially differentiate (12), (13) and (14) by 1x , 2x  and Nu , and then incorporate 

corresponding terms into the Lagrange’s equation respectively. The EOMs of the first, second 
floors and the NES mass are: 
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Rewrite the NES EOM with separate force term 

 

( ) ( )N N N N N N N N N 2 g, ,m u c u F u u u m x x+ + = − +     
             

(18) 

 
The restoring force is easy to recognize. 
 

( ) ( ) ( ) ( )( )2 2
N N N N N N N NF h u u h u h u u h u g m′ ′ ′′ ′= ⋅ + ⋅ + ⋅    

       
(19) 

 
As stated in Track NES Section, the NES force-displacement relationship depends on the 

shape of the track,
 ( )Nh u . The following plots in Fig. 4 show the force-displacement 

relationships of a track NES with different polynomial track shapes along with the 
force-displacement relationship of a typical TMD. 
 
 



 

Fig. 4. Force-displacement relationships of TMD and NES with different track shapes 
 

A critical task in the design of an NES is the selection of the track shape. The second 
order polynomial track behaves almost linearly as a TMD, thus it is eliminated from this study 
due to our desired to have a restoring force with an essential nonlinearity. While all the higher 
order tracks have a nonlinear restoring force relationship, in this study a track with a shape of 
fourth order polynomial is chosen. The reason for this choice is that a track shape of 

( ) 4
N Nh u a u= ⋅  is more practically realizable than the other shapes due to the less severe 

curve in the track. Furthermore, to simplify the analyses and optimization of this system only 
one-term polynomial track shapes are considered.  Fig. 5 shows the displacement responses 
of the two degree-of-freedom primary structure with a track NES utilizing different track 
shapes. All the tracks depicted in Fig. 5 (The aspect ratio of this figure has been adjusted such 
that the horizontal and vertical dimensions of the track shape are correctly proportioned) 
produce similar response reductions; however, some tracks are easier to realize due to lower 
curvatures. Therefore, the track shape is assumed to be of the form ( ) 4

N Nh u a u= ⋅ . 
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Fig. 5. Displacement response of NES systems with different track shape orders 

 

 
Fig. 6. NES track shapes considered (equal scaling on the axes). 

 
The EOM of NES mass corresponding to the configuration using a fourth order track 

shape is 
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where a  is the coefficient in the track shape ( ) 4

N Nh u a u= ⋅ . 
 
OPTIMIZATION 
 
Performance Measures 

To evaluate the performance of the track NES in reducing the response of the primary 
structure, measurements including effective damping and storey drift are used. 
 
Effective Damping measure   Due to the nonlinearity in the system, the conventional linear 
damping ratio doesn’t apply to the track NES system studied in this paper. Therefore a 
measure referred to as effective damping is developed to evaluate the apparent modal 
damping that results from the addition of the NES to the primary structure. As is discussed in 
Quinn et al. (2013), by converting the resulting response of the linear primary structure after 
the input has finished into modal coordinates, the mass normalized single-degree-of-freedom 
EOM for the ith mode is: 
 

 0i i i i iq k qqλ+ + =   (21) 
 

iq , iq , and iq  are the ith mode displacement, velocity, and acceleration, iλ  is the 
instantaneous effective damping in the ith mode, and ik  is the instantaneous effective modal 
stiffness of the ith mode. The average effective damping, iλ , can be derived by multiplying 
the equation by iq  and integrating over the time length, from 0T  to endT .   
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With the assumption that the changes in effective stiffness are small, this equation can be 
simplified by using the constant 2

iω  instead of ik , where iω  is the natural frequency of 
the ith mode. The result of this integration is: 
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Solving for iλ  yields: 
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The numerator of this expression for iλ  can also be written in terms of ( )iE t , the 

energy in the ith mode at time t. 
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Finally, the effective damping ratio can be obtained via the following expression: 

 

 2
i

i
i

λζ ω=  (26) 

 
The accumulated ratio measure, known as effective damping, is an integral of the entire 

record and results in the most representative effective damping of that time history; as a 
consequence, the value is dependent on the time of analysis. It is necessary to make sure the 
length of analyzing time is long enough to capture the major changes in the responses and the 
measures of effective damping are derived from time of the same length when they are 
compared. This damping measure reflects the damping ability of the system thus a higher 
value of effective damping results from a more efficient response reduction. 
 
Storey drift measure   The other measure used to evaluate the performance of the NES is 
referred to as story drift measure. This measure is the ratio of maximum RMS story drift in 
the primary structure when the NES is unlocked and locked as is shown in Eq. (27). A lower 
value of the storey drift measure corresponds to a more efficient reduction in response, which 
is the opposite of the measure of effective damping. The value of this measure depends on the 
length of the time record that is used for its calculation, especially when the structure is 
subjected to a transient loading. Therefore it is the same as the effective damping measure that 
the time needs to be long enough and kept at a consistent length when the measures from 
different systems are compared.  
 

Storey drift measure 
( ) ( )

( ) ( )
w/NES w/NES w/NES
1 2 1

w/oNES w/oNES w/oNES
1 2 1

max std ,std

max std ,std

x x x

x x x

 − =
 − 
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Optimization Procedure 

The goal of the optimization procedure is to equip the structure with a track NES with a 
mass and track shape that can produce the highest effective damping and smallest normalized 
storey drift, when subjected to an impulsive loading. Another goal is that the resulting NES 
system is robust to changes and uncertainty in the primary structure when the detuning of the 
primary structure is taken into consideration. The impulsive load used for this numerical 
optimization is realized by applying an initial velocity to both floors of the primary structure 
and the NES mass, which resembles the effect on the structure from a sudden ground motion. 
The primary load for this optimization is an initial velocity of 0.15 m/s. This value is chosen 
so that the response of the structure is in a reasonable range, considering the test structure on 
which the numerical model is based. For this optimization, the NES damping factor is set at 
1.6 Ns/m, a empirical value based on previous studies of relevant NES systems (Wierschem et 
al. 2013; Wierschem et al. 2012; AL-Shudeifat et al. 2013). 

The optimization includes three steps. 
(1) Choose the ranges of the NES mass and the coefficient of the track shape that are 

reasonably realizable and have the potential to produce good performance. The number of 
distinct NES systems analyzed for this optimization is the product of the numbers of the NES 



mass and the numerical value of the track coefficient to be considered. For this optimization 
analysis 19 masses from 1% to 10% of the primary structure are considered (Table 1) and 10 
track shape coefficients from 1000 to 10000 are considered (Table 2), totaling 190 NES 
systems. 
 

Table 1. NES mass range considered in optimization 

No. 1 2 3 4 5 6 7 8 9 10 

Mass (kg) 0.485 0.7275 0.97 1.2125 1.455 1.6975 1.94 2.1825 2.425 2.6675 

Ratio to primary structure 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5% 5.5% 

No. 11 12 13 14 15 16 17 18 19  

Mass (kg) 2.91 3.1525 3.395 3.6375 3.88 4.1225 4.365 4.6075 4.85  

Ratio to primary structure 6% 6.5% 7% 7.5% 8% 8.5% 9% 9.5% 10%  

 
Table 2. Track shape coefficient range considered in optimization 

No. 1 2 3 4 5 6 7 8 9 10 

Track coefficient (×103/m3) 1 2 3 4 5 6 7 8 9 10 

 
(2) Multiple analyses are performed with each of the systems considered, so that the 

effectiveness of the NES can be evaluated when the amplitude of the load and frequency of 
the base structure are changed. By investigating 6 structural stiffnesses including the original 
stiffness and five modified ones and eight initial velocities from 0.03m/s to 0.35m/s, there are 
48 stiffness-load combinations, and, thus, 48 sets of performance measures are calculated for 
each NES configuration considered. To consider all these combinations of structural stiffness 
and initial velocity in the optimization, the weighted-average of each measure is used. While 
some initial velocities and stiffnesses are the primary focus, some are less likely to happen, 
such as higher stiffnesses and higher loads, or produce relatively small responses, such as 
lower loads. Accordingly, the weight of each stiffness-load combination is configured to 
account for the importance of the combinations. The highest weight is given to the 0.15 m/s 
initial velocity and original stiffness combination. The weights for each stiffness-load 
combination are listed in Table 3. 
 

Table 3. Weights for stiffness-load combination to produce weighted-average of measures 
used to evaluate NES effectiveness 

 

 
70% 80% 90% 100% 110% 120% 

0.03 0.35 0.40 0.45 0.50 0.25 0.20 

0.05 0.42 0.48 0.54 0.60 0.30 0.24 

0.07 0.49 0.56 0.63 0.70 0.35 0.28 

0.10 0.56 0.64 0.72 0.80 0.40 0.32 

0.15 0.70 0.80 0.90 1.00 0.50 0.40 

0.20 0.56 0.64 0.72 0.80 0.40 0.32 

0.27 0.42 0.48 0.54 0.60 0.30 0.24 

Ratio to original 
      stiff. 

Initial vel. 
(m/s) 



0.32 0.35 0.40 0.45 0.50 0.25 0.20 

 
(3) After running analyses over all those NES systems, the NES mass and the track 

shape that produce the maximum weighted-average effective damping measure and the 
minimum weighted-average storey drift measure can be identified as the optimal values for 
the track NES system. Note that the optimal mass and track shape may not be the same when 
considering the effective damping measure or storey drift measure, but they should be 
confined in a close region where the these parameters can be chosen from. 

The weighted-average of the performance measures are shown in Fig. 7. The resulting 
optimal NES mass is 2.425 kg, which is 5% of the primary structure, and the optimal track 
shape is ( ) 4

N N2000h u u= . These parameters are not the ones that correspond to maximum 
effective damping measure or minimum storey drift measure but are within the favorable 
regions of both measures. This optimal configuration is marked with an X in Fig. 7. 
 
 

 
Fig. 7. Weighted-average of the performance measures of NES systems 
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COMPARISON 
 

To evaluate the effectiveness of the optimized track NES system, the response of the NES 
system is compared to the response of the primary structure with the NES locked and a 
traditional TMD system. When NES is locked the system remains linear with the mass of 
NES added to the top floor. 
 
TMD System 

The TMD considered for this comparison has the same mass and damping as the NES 
system. To provide an accurate comparison, the TMD’s stiffness is obtained by conducting a 
similar optimization procedure as the NES in Optimization Procedure Section. The difference 
in this optimization is that the TMD stiffness is the only variable instead of the two variables 
of mass and track shape for the NES. Additionally, for this optimization, only the detuning of 
structure is taken into consideration. The load level is not considered as it has no effect on the 
response efficiency of structures with the TMD attached due to the linear response of the 
system. The weights assigned to detuned structures are listed in Table 4. The highest weight is 
given to the original stiffness and the lowest weight is given to the largest increased stiffness 
as it is the least likely to occur. The resulting performance measures of TMD systems are 
shown in Fig. 8.  
 

Table 4. Weights for stiffness 

Ratio to original stiff. 70% 80% 90% 100% 110% 120% 

Weight 0.7 0.8 0.9 1.0 0.5 0.4 

 

 

 
Fig. 8. Performance measures of TMD systems 

 
From the peak value from this analysis, the complete parameters of the optimized TMD 
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Response Comparisons 
Fig. 9 shows the displacement of the first and second floors under medium-level 

impulsive load (initial velocity = 0.15m/s) when no change is made in the structural stiffness. 
Both control systems make a dramatic reduction in displacement by 50% within the first 5 
seconds. 

The time histories of the mechanical energy contained in each of the systems are shown in 
Fig. 10. For the locked system, the total energy decreases only due to the mechanism of the 
intrinsic damping in the linear primary structure and by the end of 10 seconds there is only a 
10% reduction. In contrast to this, the NES system is competitive with the TMD system and 
both systems are able to reduce the energy in the system below 5% after 10 seconds. However, 
the NES is able to have a faster effect on the system than the TMD. As early as 3 seconds, the 
reduction by the NES is 70% compared to 55% made by the TMD. 
 

 

 

Fig. 9. Displacements of 100% stiffness structures under 0.15 m/s load 
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Fig. 10. Energy of 100% stiffness structures under 0.15 m/s load 

 
The wavelet transform of square of velocity is shown in Fig. 11 where the first storey 

responses of the locked system, the TMD system, and the track NES system under 0.32 m/s 
initial velocity load and with no stiffness changes are compared. As the kinetic energy can be 
written in terms of velocity squared, the amount of energy dispersed among the frequency 
spectrum is relevant to the density of the lines in the wavelet figure. The higher load is chosen 
because the energy transfer is more apparent at a higher level. In all the wavelet plots, two 
dominant lines at about 1.5 Hz and 5 Hz can be seen over the entire time considered; these 
lines correspond to the natural frequencies of the primary structure. For the locked system, the 
line at the lower frequency is much denser than the one at the higher frequency showing that 
the structure vibrates mainly at its first mode. Furthermore, the lines keep almost the same 
density till the end of the record revealing that very limited energy is dissipated. The TMD 
system, although vibrates at the first frequency, can achieve a significant energy reduction. In 
contrast to those two linear systems, the track NES enables the structure to vibrate more at the 
second mode transferring the energy from the lower mode to the higher mode. The energy 
also spreads into frequencies other than these two natural frequencies showing that the NES is 
able to resonate with a wide range of frequency. 
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Fig. 11. Wavelet transform of first storey velocity squared 
 

Fig. 12 shows the displacement responses under the same load as Fig. 8 and Fig. 9, but the 
structural stiffness of the primary structure is reduced to 70% of the original stiffness. 
Additionally, the time histories of mechanical energy in each system are compared in Fig. 13. 
Both NES system and TMD system outperform the locked system as their responses are less 
than half of responses of the locked system toward the end of the time. However, while the 
NES system still keeps a high efficacy and delivers a 95% reduction by the end of 10 seconds, 
the TMD system reduces energy only by 85% as it is no longer in tune with the primary 
structure. 
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Fig. 12. Displacements of 70% stiffness structures under 0.15 m/s load 

 

 

Fig. 13. Energy of 70% stiffness structures under 0.15 m/s load 
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plots, the structural stiffness scatters at 50%, 100% and 120% of the original stiffness from 
left to right in the horizontal direction, and the load level changes from 0.07 m/s to 0.15m/s 
and to 0.3 m/s upward in the vertical direction. 
 

 

 
Fig. 14. Energy of various stiffness structures under different loads 
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designed for this specific load. In the upper row where the initial velocity increases, the NES 
system keeps nearly the same efficacy as the TMD system. In the lower row where the initial 
velocity decreases, the NES system outperforms the TMD system when the stiffness is 
reduced but underperforms the TMD system when the stiffness is increased or unchanged. 

The measures of effective damping and drift ratio for various load-stiffness combinations 
are shown in Fig. 15. They are consistent with the energy plots of both control systems. 
Generally speaking, the performance of the TMD system is unaffected by changes to the load 
amplitude, but the system shows a performance decay when it is detuned. The track NES 
system, on the other hand, is more robust to the change of structural stiffness and keeps a high 
efficacy among a wide range of stiffness when it has been properly designed. However, the 
performance of the NES system is load-depended.  
 

 

 

Fig. 15. Effective damping and storey drift measures of various stiffness structures under 

different loads 
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investigation is needed on this behavior which is unique to the track NES system. However, 

based on the observation, the peak behavior prevents the restoring force from becoming 

excessively large with a negative stiffness component. Additionally, the most effective 

response reduction for the track NES in this study occurs when a slight peak behavior appears, 

as shown in the 100% structural stiffness 0.15 m/s initial velocity case. 

 

 

 
Fig. 16. NES/TMD force-displacement relationship of various stiffness structures under 

different loads 
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response of a two degree-of-freedom primary structure by using a track NES is reported in 
this paper. The results show that the track NES can mitigate the response of the structure 
considered to some given impulsive loads competitively compared to an in-tune TMD and, 
additionally, remain robust against detuning in the structure; however, the efficacy of NES 
system is shown to be vulnerable to changes in the level of loads. Additionally, evaluation of 
the force-displacement relationship of the track NES helps to reveal the effect of its 
nonlinearity compared to the linear force-displacement relationship of the TMD. This 
research demonstrates the potential of nonlinear energy sinks to mitigate impulsive loads on 
structures. Further study is underway to demonstrate experimentally the results found in this 
paper. 
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